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Abstract. The nonlinear Rayleigh-Taylor stability of the cylindrical interface between the vapor and liquid
phases of a magnetic fluid is studied when the phases are enclosed between two cylindrical surfaces coaxial
with the interface, and when there is mass and heat transfer across the interface. The method of multiple
scale expansion is used for the investigation. The evolution of amplitude is shown be governed by a
nonlinear Ginzburg-Landau equation. The various stability criteria is discussed, and the region of stability
is displayed graphically.

PACS. 47.65. Magnetohydrodynamics

1 Introduction

The problem of stability of liquids when there is mass and
heat transfer across the interface has been investigated by
several researchers [1–7]. Hsieh [2] established a general
formulation of interfacial flow problem with mass and heat
transfer and applied it to the Rayleigh-Taylor and Kelvin-
Helmholtz instability problems in plane geometry. In the
nuclear reactor cooling of fuel rods by liquid coolants, the
geometry of the system in many cases is cylindrical.

Nayak and Chakraborty [3] studied the Kelvin-
Helmholtz stability of the cylindrical interface between the
vapor and liquid phases of a fluid, when there is a mass
and heat transfer across the interface. On the other hand,
Elhefnawy [4] studied the effect of a periodic radial mag-
netic field on the Kelvin-Helmholtz stability of the cylin-
drical interface between two magnetic fluids when there is
mass and heat transfer across the interface. The analysis
of these studies was confined within the framework of the
linear theory.

The effect of mass and heat transfer across the inter-
face should be taken into account in stability discussions,
when the situations are like film boiling of fluids. How-
ever, with the linear analysis, the stability criteria remain
the same as in the case with the neglect of heat and mass
transfer across the interface. Hsieh [5] found that when the
vapor region is hotter than the liquid region, as is usually
so, the effect of mass and heat transfer tends to inhibit
the growth of the instability. Thus, it is clear that such a
uniform model based on the linear theory is inadequate to
explain the mechanism involved, and the nonlinear theory
is needed to reveal the effect of heat and mass transfer
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on the stability of the system. This problem is of funda-
mental importance in number of applications such as de-
sign of many types of contacting equipment, e.g., boilers,
condensers, reactors and others in industrial and environ-
mental processes.

The purpose of this paper is to investigate the non-
linear stability of cylindrical interface between the vapor
and liquid phases of a magnetic fluid when there is a mass
and heat transfer across the interface. The basic equations
with the accompanying boundary conditions are given in
Section 2. The first order theory and the linear dispersion
relation are obtained in Section 3. In Sections 4 and 5,
we have derived second and third order solutions. In Sec-
tions 6 and 7, some numerical examples are presented in
graphical forms.

2 Formulation of the problem and basic
equations

We shall use a cylindrical system of coordinates (r, θ, z) so
that in the equilibrium state z-axis is the axis of symmetry
of the system. The central solid core has a radius a(1).
In the equilibrium state the fluid phase “1”, of density
ρ(1), and magnetic permeability µ1 occupies the region
a(1) < r < R, and, the fluid phase “2”, of density ρ(2), and
magnetic permeability µ2 occupies the region R < r <
a(2). The temperature at r = a(1), r = R, and r = a(2)

are taken as T1, T0, and T2 respectively. The bounding
surfaces r = a(1), and r = a(2) are taken as rigid (see
Fig. 1). The interface, after a disturbance, is given by the
equation

F (r, z, t) = r −R− η = 0, (1)



496 The European Physical Journal B

Fig. 1. Configuration under consideration in film boiling.

where η is the perturbation in radius of the interface from
its equilibrium value R, and for which the outward unit
normal vector is written as

n =
∇F
|∇F | =

{
1 +

(
∂η

∂z

)2}−1/2(
er − ∂η

∂z
ez

)
, (2)

where er and ez are unit vectors in r and z directions,
respectively. We assume that fluid velocity is irrotational
in the region so that velocity potentials are φ(1) and φ(2)

for fluid phases 1 and 2. In each fluid phase

∇2φ(j) = 0, (j = 1, 2). (3)

The two fluids are subject to an external magnetic field
H1 and H2 acting along r axis, i.e.

Hj =
1
r
Hjer (j = 1, 2). (4)

Since we assume that there are no free currents at the
two phases in the equilibrium state, we find that the
magnetic induction is continuous at the interface, i.e.

µ1H1 = µ2H2. (5)

We introduce the magnetic potential ψ(1) and ψ(2)

such that

h(j) = −∇ψ(j) (j = 1, 2). (6)

Therefore the differential equation satisfied by
ψ(j)(j = 1, 2) is Laplace’s equation

∇2ψ(j) = 0, (j = 1, 2). (7)

The solutions for φ(j), ψ(j)(j = 1, 2) have to satisfy the

boundary conditions. The relevant boundary conditions
for our configuration are:

(i) On the rigid boundaries r = a(1) and r = a(2):

(1) The normal field velocities vanish on both central
solid core and the outer bounding surface.

∂φ(1)

∂r
= 0 on r = a(1), (8)

∂φ(2)

∂r
= 0 on r = a(2); (9)

(2) Tangential components of the magnetic field vanish
on these boundaries, i.e.,

∂ψ(1)

∂z
= 0 on r = a(1), (10)

∂ψ(2)

∂z
= 0 on r = a(2). (11)

(ii) On the interface r = R+ η(z, t):

(1) The tangential components of the magnetic field
are continuous at the interface, i.e., h1t = h2t, therefore

∂η

∂z

[[
∂ψ

∂r

]]
+

[[
∂ψ

∂z

]]
= 0, (12)

where [[ ]] represents the difference in a quantity as we cross
the interface, i.e., [[ h]] = h(2) − h(1), where superscripts
refer to upper and lower fluids, respectively.

(2) The normal components of the magnetic induction
are continuous at the interface, i.e., µ1h1n = µ2h2n,
therefore

[[
µ
∂ψ

∂r

]]
− ∂η

∂z

[[
µ
∂ψ

∂z

]]
= 0. (13)

(3) The conservation of mass across the interface:
[[
ρ

(
∂F

∂t
+ ∇φ · ∇F

)]]
= 0,

or
[[
ρ

(
∂φ

∂r
− ∂η

∂t
− ∂η

∂z

∂φ

∂z

)]]
= 0. (14)
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(4) The interfacial condition for energy is

Lρ(1)

(
∂F

∂t
+ ∇φ(1) · ∇F

)
= S(η), (15)

where L is the latent heat released when the fluid is trans-
formed from phase 1 to phase 2. Physically, the left-hand
side of (15) represents the latent heat released during the
phase transformation, while S(η) on the right-hand side
of (15) represents the net heat flux, so that the energy
will be conserved.

In the equilibrium state, the heat fluxes in the
direction of r increasing in the fluid phase 1 and 2 are
−K1(T1 −T0)/R log(a/R) and −K2(T0 −T2)/R log(R/b),
where K1 and K2 are the heat conductivities of the two
fluids. As in Elhefnawy [4], we denote

S(η) =
K2(T0 − T2)

(R+ η)(log b− log(R+ η))

− K1(T1 − T0)
(R + η)(log(R+ η) − log a)

, (16)

and we expand it about r = R by Taylor’s expansion,
such as

S(η) = S(0) + ηS′(0) +
1
2
η2S′′(0) + · · · , (17)

and we take S(0) = 0, so that

K2(T0 − T2)
R log(b/R)

=
K1(T1 − T0)
R log(R/a)

= G(say), (18)

indicating that in equilibrium state the heat fluxes are
equal across the interface in the two fluids.

From (1, 15), and (17), we have

ρ(1)

(
∂φ(1)

∂r
− ∂η

∂t
− ∂η

∂z

∂φ(1)

∂z

)
= α(η + α2η

2 + α3η
3),

(19)

where

α =
G log(b/a)

LR log(b/R) log(R/a)
,

α2 =
1
R

(
−3

2
+

1
log(b/R)

− 1
log(R/a)

)
.

(5) The conservation of momentum balance, by taking
into account the mass transfer across the interface, is

ρ(1)(∇φ(1) · ∇F )
(
∂F

∂t
+ ∇φ(1) · ∇F

)
=

ρ(2)(∇φ(2) · ∇F )
(
∂F

∂t
+ ∇φ(2) · ∇F

)

+ (p2 − p1 + σ∇ · n − [[ µ{(nαhα)2 − 1
2
hγhγ}]])|∇F |2,

(20)

where p is the pressure and σ is the surface tension coef-
ficient, respectively.

By eliminating the pressure by Bernoulli’s equation
we can rewrite the above condition (20) as[[
ρ

{
∂φ

∂t
+

1
2

(
∂φ

∂r

)2

+
1
2

(
∂φ

∂z

)2

−
{

1 +
(
∂η

∂z

)2}−1

×
(
∂φ

∂z

∂η

∂z
− ∂φ

∂r

)(
∂η

∂t
+
∂φ

∂z

∂η

∂z
− ∂φ

∂r

)}]]

=−σ∂
2η

∂z2

{
1+

(
∂η

∂z

)2}−3/2

+σ(R+η)−1

{
1+

(
∂η

∂z

)2}−1/2

−
[[
µ

(
∂φ

∂n̂

)2

− 1
2
µ|∇ψ|2

]]
. (21)

where ∂/∂n̂ denotes the differentiation in the direction
normal to the surface r = R+ η(z, t).

To investigate the nonlinear effects on the stabil-
ity of the system, we employ the method of multiple
scales (Lee [8–11]). Introducing ε as a small parameter,
and variables

η =
3∑

n=1

εnηn(z0, z1, z2, t0, t, t2) +O(ε4), (22)

φ(j) =
3∑

n=1

εnφ(j)
n (r; z0, z1, z2, t0, t1, t2) +O(ε4), (j = 1, 2)

(23)

ψ(j) =
3∑

n=0

εnψ(j)
n (r; z0, z1, z2, t0, t1, t2)+O(ε4), (j = 1, 2)

(24)

The quantities appearing in the field equations (3) and
(7) and the boundary conditions (14, 19), and (21) can
now be expressed in Maclaurin series expansion around
r = R. Then, we use (22, 23) and (24) and equate the
coefficients of equal power series in ε to obtain the linear
and the successive nonlinear partial differential equations
of various orders .

3 Linear theory

The zeroth order solution yields

ψ
(j)
0 = −Hj ln r (j = 1, 2).

When surface is perturbed from the equilibrium r = R
to r = R + η exp(iθ), the linear wave solutions of (2.3)
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subject to boundary conditions yield

η1 = A(z1, z2, t1, t2)eiθ + Ā(z1, z2, t1, t2)e−iθ, (25)

φ
(j)
1 =

1
k

(
α

ρ(j)
− iω

)
A(z1, z2, t1, t2)E(j)(k, r)eiθ + c.c.,

(26)

ψ
(j)
1 =

Hj

R
N1(1 − ν)A(z1, z2, t1, t2)F (j)(k, r)eiθ + c.c.,

(j = 1, 2) (27)

where

E(i)(k, r) =
I0(kr)K1(ka(i)) + I1(ka(i))K0(kr)
I1(kR)K1(ka(i)) − I1(ka(i))K1(kR)

, (28)

F (i)(k, r) =
I0(kr)K0(ka(i)) − I0(ka(i))K0(kr)
I1(kR)K0(ka(i)) + I0(ka(i))K1(kR)

, (29)

N−1
1 = F (1)(k,R) − νF (2)(k,R)

θ = kz0 − ωt0, ν = µ1/µ2

with Im and Km(m = 0, 1) are the modified Bessel func-
tions of the first and second kinds, respectively. Here Ā de-
notes the complex conjugate of amplitude A, and k and ω
stand for the wave number and the frequency of the wave.

Substituting (25–27) into the first order terms in (21),
we obtain the following dispersion relation

D(ω, k) = −a0ω
2 − ia1ω + a2 = 0, (30)

where

a0 = ρ(1)E(1)(k,R) − ρ(2)E(2)(k,R),

a1 = α
{
E(1)(k,R) − E(2)(k,R)

}
,

a2 =
σk

R2

[(
R2k2 − 1

)
+ Γ

(
1 − 1

ν

)
{1 +N1(1 − ν)Rk}

]
,

where

Γ =
µ2H

2
2

Rσ
·

From the properties of Bessel functions, and since α is
always positive, we notice that a0 > 0, and a1 > 0. Ap-
plying the Routh-Hurwitz criteria to (30), the condition
for stability is a2 > 0, which reduces to

Γ ≥ (
1 −R2k2

)
/(1 − 1/ν) {1 +N1(1 − ν)Rk} . (31)

From (31) we see that magnetic field has a stabilizing in-
fluence on the wave motion. It is also clear that the mass
and heat transfer coefficient α has no effect on the stability
condition.

For values of k ≥ kc, where

Γ =
(
1 −R2k2

c

)
/(1 − 1/ν) {1 +N1(1 − ν)Rkc} . (32)

the system is linearly stable. For k < kc the system is
unstable. The corresponding critical frequency, ωc is zero
for this case.

4 Second order solutions

With the use of the first order solutions, we obtained the
equations for the second order problem

∇2
0φ

(j)
2 = −2

∂2φ
(j)
2

∂z0∂z1
, (j = 1, 2) (33)

∇2
0ψ

(j)
2 = −2

∂2ψ
(j)
2

∂z0∂z1
, (j = 1, 2) (34)

where the linear operator is ∇2
0 is defined to be

∇2
0 =

∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
0

, (35)

and the boundary conditions at r = R.

ρ(j)

{
∂φ

(j)
2

∂r
− ∂η2
∂t0

}
− αη2 =

[
ρ(j)

{
α

ρ(j)
− iω

}{
1
R

− 2kE(j)

}
+ αα2

]
A2e2iθ

+ ρ(j) ∂A

∂t1
eiθ + c.c.+ 2α

(
1
R

+ α2

)
|A|2, (j = 1, 2)

(36)

ρ(2) ∂φ
(2)
2

∂r
− ρ(1) ∂φ

(1)
2

∂r
− {ρ(2) − ρ(1)}∂η2

∂t0
=

[[
ρ

(
α

ρ
− iω

){
1
R

− 2kE
}]]

A2e2iθ

+ {ρ(2) − ρ(1)}∂A
∂t1

eiθ + c.c. (37)

∂ψ
(2)
2

∂z
− ∂ψ

(1)
2

∂z
− H2 −H1

R

∂η2
∂z

=

i
H2k(1 − ν)

Rν

{
2N1k(1 − ν) +

1
R

}
A2e2iθ

+
∂A

∂z1

H2(1 − ν)
Rν

(1 + F (1) − νF (2))eiθ + c.c., (38)

µ2
∂ψ

(2)
2

∂r
− µ1

∂ψ
(1)
2

∂r
=

− N1

R
µ2H22k2(1 − ν)[[F ]]A2e2iθ + c.c., (39)
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ρ(2) ∂φ
(2)
2

∂t0
− ρ(1) ∂φ

(1)
2

∂t0
+ σ

(
∂2η2
∂z2

0

+
η2
R2

)

− µ2H2

R

∂ψ
(2)
2

∂r
+
µ1H1

R

∂ψ
(1)
2

∂r

=
{
−ω

2

2
[[
ρ

{
E2 − 3

}]]
+
α2

2

[[
1+E2

ρ

]]

− iαω
[[
E2

]]
+

σ

2R3

(
y2 + 2

)

+
Γσ(1 − ν)

R3ν

(
1
2
N2

0 y
2 + 2N0y +

3
2
− 2y2

+
1
2
N0N1y

2µ1

[[
F 2/µ

]])}
A2e2iθ

−
[[
ρ

k

(
α

ρ
− iω

)
E

]]
∂A

∂t1
eiθ + c.c.+ NSPT,

(40)

where N0 = N1(1 − ν), E(j) = E(j)(k,R), F (j) =
F (j)(k,R), (j = 1, 2), y = Rk, and NSPT is the nonsin-
gular producing term.

The non secularity conditions for the existence of the
uniformly valid solution are

∂A

∂t1
+ Vg

∂A

∂z1
= 0, (41)

and its complex conjugate relation and Vg is the group
velocity of the wave

Vg =
dω
dk

· (42)

Equations (33) to (40) furnish the second order
solutions:

η2 = −2
(

1
R

+ α2

)
|A|2 +A2e2iθ + Ā2e−2iθ, (43)

φ
(j)
2 =

[
− i
k

{
α

ρ(j)
−iω

}{
rL(j)(k, r)+a(j)S(j)(k, r)−

[
RE(j)

− a(j)M (j)(k,R)
]
E(j)(k, r)

}
∂A

∂z1
+

1
k

∂A

∂t1
E(j)(k, r)

]
eiθ

+B(j)e2iθE(j)(2k, r) + c.c.+ b(j)(t0, t1, t2), (j = 1, 2)
(44)

ψ
(j)
2 =

H2

R2

(
1
ν
− 1

)
C(j)A2e2iθF (j)(2k, r)

− i(1 − ν)
N1Hj

R

[
rT (j)(k, r)

−a(j)P (j)(k, r)−D(j)F (j)(k, r)
]
∂A

∂z1
eiθ +c.c., (j = 1, 2).

(45)

Symbols in the above equations are found in the Ap-
pendix. Equation (41) shows that, to the lowest order in ε,
the amplitude A is constant in a frame of reference moving
with the group velocity of the waves.

Furthermore, we have assumed the D(2ω, 2k) 6= 0. The
case when D(2ω, 2k) = 0 corresponds to the second har-
monic resonance.

5 Third order solutions

We examine now the third order problem:

∇2
0φ

(i)
3 = −∂

2φ
(i)
1

∂z2
1

− 2
∂2φ

(i)
1

∂z0∂z2
− 2

∂2φ
(i)
2

∂z0∂z1
, (i = 1, 2)

(46)

∇2
0ψ

(i)
3 = −∂

2ψ
(i)
1

∂z2
1

− 2
∂2ψ

(i)
1

∂z0∂z2
− 2

∂2ψ
(i)
2

∂z0∂z1
, (i = 1, 2).

(47)

Substituting the values of φ(i)
1 from (26) and φ(i)

2 from (44)
into (46), we obtain φ

(j)
3 (k, r), (j = 1, 2) which are listed

in the Appendix. The solution of (47) is also given in the
Appendix.

With the third order solution the condition for third
order perturbation to be nonsecular is

i
(
∂A

∂t2
+ Vg

∂A

∂z2

)
+ P

∂2A

∂z2
1

= QA2Ā+RA, (48)

where
P =

1
2

dVg

dk
,

R = 2σµ̂kck

(
∂D

∂ω

)−1

,

where µ̂ is defined by k = kc + µ̂ε2 with kc equal to critical
wave number.

It is now appropriate to introduce the transformations

ζ = ε−1(z2 − Vgt2) = (z1 − Vgt1) = ε(z − Vgt)

and τ = t2 = εt1 = ε2t.

Equation (48) is reduced to

i
∂A

∂τ
+ P

∂2A

∂ζ2
= QA2Ā+RA, (49)

which is a complex Ginzburg-Landau equation, i.e.

P = Pr + iPi, Q = Qr + iQi, and R = Rr + iRi.

The stability of a Ginzburg-Landau equation (49) is dis-
cussed by Lange and Newell [12], and Matkowsky and
Volpert [13]. They showed that stability conditions are

PrQr + PiQi > 0 and Qi < 0, (50)

provided that Rr = 0.
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Fig. 2. Variation of δ with respect to h1.

We notice that the condition Rr = 0 is satisfied when
ω = 0, and Pr = Qr = 0. In this case, (49) reduces to the
nonlinear diffusion equation,

i
∂A

∂τ
+ Pi

∂2A

∂ζ2
= QiA

2Ā+RiA, (51)

where

Qi =
k

a1

{
α2

[[(
N+1
R

+α2−2kE
){

E(2k,R)E−1
ρ

}
+

3
Rρ

]]

+
σ

R4

[
2N(k2R2−1)+4Rα2+7−1

2
k2R2(1−3k2R2)+ΓB0

]}
.

(52)

with the symbols explained in the Appendix.
The solution of the nonlinear diffusion equation (51) is

valid near the marginal state (i.e. ω = 0) and therefore be
used to study the stability of the system. From inequalities
(50), we find the stability conditions of (51) are

Pi < 0 and Qi < 0. (53)

The stability depends on the thickness of vapor h and
α. The stability can therefore be discussed by dividing
the h − k−plane into stable and unstable regions. The
transition curves are given by the vanishing of Pi and Qi.

6 Numerical results

In expression (74), k and kc are essentially the same. From
(52) and criteria (53), it is seen that a relevant nondimen-
sional parameter is δ which is defined in (A.21) and from
(52) we can obtain the value δ for which the system is
stable. The stability depends on various parameters. Let
h1 denote thickness of the vapor. In Figure 2, we show
the variation of δ with respect to the thickness of the va-
por. Here we have chosen a(1) = 1 cm, and a(2) = 2 cm,
and Γ = 2, µ1 = 1.007, µ2 = 1.7, ρ(1) = 3.652 ×
10−4 gm cm−3, ρ(2) = 5.97 × 10−2 gm cm−3. The region

(a)

(b)

Fig. 3. Variation of δ with respect to magnetic strength.

above the curve is the stable region, while below the curve
is the region of instability. From this figure we see that as
h1 increases δ increases also. This means, since α is pro-
portional to the heat flux of the system, with the same
heat flux, the thinner the vapor the easier the system can
be stabilized.

In Figure 3a, b we show the variation of δ with respect
to Γ . In Figure 3a we chose a(1), a(2), ν, as in Figure 2, and
h1 = 0.2 cm. As in Figure 2, the region above the curve
is the stable region, and below the curve is the unstable
region. Here we see that as Γ increases, δ increases. This
means that the stronger magnetic field has destabilizing
effect. On the other hand, in Figure 3b, ν = 1.1 is chosen
while other values remain unchanged. In this case contrary
to Figure 3a, we notice that stronger magnetic field has
stabilizing effect.

In Figure 4, the variation of δ with respect to ν is
shown. Here, ρ(1), ρ(2), h1 are as in Figure 3a, but Γ = 2.
This figure shows that as ν is increased, the system is
stabilized.
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Fig. 4. Variation of δ with respect to ν.

Fig. 5. Stability diagram for the system as considered in Fig-
ure 2 (h = 0.2 cm).

7 Stability analysis when α = 0

When the mass and heat transfer is neglible, the anal-
ysis can be simplified by taking α = 0 in the evolution
equation (48). In this case, the imaginary parts of P,Q,
and R in (49) are equal to zero. Therefore (49) is now the
nonlinear Schrödinger equation

i
∂A

∂τ
+ Pr

∂2A

∂ζ2
= QrA

2Ā+RrA, (54)

where Pr, Qr and Rr are the values of P, Q, and R,
respectively, when α = 0.

It is known that the solutions of (54) are unstable
against modulation if

PrQr < 0. (55)

The modulational instability is characterized by the crite-
rion (55) which yields the value of k at which the instabil-
ity occurs. Such criterion depends upon the wave number,
and the thickness of the fluid h1 or h2.

In Figure 5 we have sketched the transition curves
across which P and Q change signs for different values

Fig. 6. Stability diagram for the system as considered in Fig-
ure 2 (h = 0.4 cm).

of Γ when h1 = 0.2 cm. The values of ρ(1),(2), µ1,2, σ are
as in Figure 2. Here, the shaded region is the region of sta-
bility where both P and Q are both negative or positive.
The dotted line is the linear curve. The curve represent-
ing second harmonic resonance can not be seen in this
diagram since ρ(1) < ρ(2). It is interesting to observe from
Figure 5 that as k increases, the region of stability is en-
larged. Figure 6 represents the same system as considered
in Figure 5, but in this case h = 0.4 cm is chosen. The
situation is very similar to Figure 5, except that we can
notice that for the same value of k, the transition curves
are determined at higher values of Γ than in the case of
Figure 5.

Conclusion

In the present paper, nonlinear analysis of Rayleigh-Taylor
instability across the cylindrical interface of magntic flu-
ids with heat and mass transfer by using the multiple-
scale expansion method is presented. A Ginzburg-Landau
equation describing the evolution of nonlinear waves is ob-
tained. Also a nonlinear Schrödinger equation is obtained
when heat and mass transfer is absent. In this solution,
the effect of heat and mass transfer is measured by pa-
rameters α, α2, and Γ . It is found that when α is large
enough or when the nondimensional parameter δ is large
enough, the system, which would be unstable classically,
can be stabilized for finite amplitude disturbances. Since
α is proportional to the heat flux of the system, when the
heat flux is sufficiently intense, the system can be stabi-
lized. The important point is that the nonlinear effect can
indeed increase the stability range of the Rayleigh-Taylor
system when there is strong heat and mass transfer while
this is not the case for the ordinary Rayleigh-Taylor in-
stability. We also found that with the stronger magnetic
field the system is more stable when ν = 1.1. Unlike linear
theory, with nonlinear theory, it is evident that the mass
and heat transfer plays an important role in the stability
of fluid, in a situation like film boiling.
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Appendix

A2 = − 2k
D(2ω, 2k)

{[[
ρiω
k
E(2k,R)β +

ρ

2
E2

×
(
α

ρ
− iω

)2

+
3ω2ρ2 + α2

2ρ

]]

+
σ

R3

[
1+

y2

2
+Γ

(
1
ν
−1

)(
1
2
N2

0 y
2+2N0y+

3
2
−2y2+N2(1−ν)y

+
1
2
N0N1y

2µ1[[F 2/µ]] + 2y2N1N2{(1 − ν)2

+ ν[[F ]][[F2]]}
)]}

A2, (A.1)

B(j) =
1
2k

[
β(j)A2 +

{
α

ρ(j)
− 2ωi

}
A2

]
, (A.2)

C(1) = N2

[
A2 − 1

2
− yN1

{
1 − ν + ν[[F ]]F (2)

2

}]
, (A.3)

C(2) = νN2

[
A2 − 1

2
− yN1

{
1 − ν + [[F ]]F (1)

2

}]
, (A.4)

D(1) = N1

{
ν[[RF + aQ]]F (2) + (1 − ν)R + µ1[[aP/µ]]

}
,

(A.5)

D(2) = N1

{
[[RF + aQ]]F (1) + (1 − ν)R + µ1[[aP/µ]]

}
,

(A.6)

F
(j)
2 =F (j)(2k,R), (j=1, 2) N−1

2 =F (1)
2 −νF (2)

2 , (A.7)

β(j) = k

{
α

ρ(j)
− iω

}{
1
y
− 2E(j)

}
+
αα2

ρ(j)
, (A.8)

S(i)(k, r) =
1
γ(i)

{
K0(kr)I0

(
ka(i)

)
− I0(kr)K0

(
ka(i)

)}
,

(A.9)

P (i)(k, r) =
1
δ(i)

{
K0(kr)I1

(
ka(i)

)
+ I0(kr)K1

(
ka(i)

)}
,

(A.10)

L(i)(k, r) =
f (i)(k, r)
γ(i)

, M (i)(k, r) =
g(i)(k, r)
γ(i)

, (A.11)

Q(i)(k, r) = −f
(i)(k, r)
δ(i)

, T (i)(k, r) =
g(i)(k, r)
δ(i)

,

(A.12)

f (i)(k, r) = I1(kr)K1

(
ka(i)

)
−K1(kr)I1

(
ka(i)

)
,

(A.13)

g(i)(k, r) = K1(kr)I0
(
ka(i)

)
+ I1(kr)K0

(
ka(i)

)
,

(A.14)

γ(i) = f (i)(k,R), δ(i) = g(i)(k,R), (A.15)

P (i) = P (i)(k,R), Q(i) = Q(i)(k,R), (A.16)

φ
(j)
3 = −1

k

(
α

ρ(j)
− iω

)[
1
2

{
r2E(j)(k, r)

− r

k
L(j)(k, r)

}
−arM (j)(k, r)

− {RE − aM}rL(j)(k, r) +
G(j)(k, r)
kγ(j)

{
1
2k

−RE + aM

}

−
{
R

2
(E+y)+y [aF − (RE − aM)]E

}
E(j)(k, r)

k

]
∂2A

∂z2
1

eiθ

− i
k

{
rL(j)(k, r) + aS(j)(k, r) − (RE − aM)E(j)(k, r)

}

×
[{

α

ρ(j)
−iω

}
∂A

∂z2
+

∂2A

∂z1∂t1

]
eiθ+

∂A

∂t2

E(j)(k, r)
k

eiθ+φ̃(j)
3 ,

(A.17)

where

G(i)(k, r) =
1
γ(i)

{K0(kr)I1(kR) + I0(kr)K1(kR)},

and, for brevity of notations, we used

E = E(j)(k,R), M = M (j)(kR),

F = F (j)(kR), a = a(j)

and

φ̃
(j)
3 = −kE(j)(k, r)

[
2
{
E(j)(2k,R)− 1

y

}
B(j)

+
{
− 2

(
E − 1

y

)(
α

ρ(j)
− iω

)

×
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1
y

+
α2

k

)
+

1
2

(
1 +

2
y2

− E

y

)(
3α
ρ(j)

− iω
)
− α

ρ(j)

− iω +
α

ρ(j)

(
4α2

k

{
1
y

+
α2

k

}
− 3α3

k2

)}
A2

−
{(

α

ρ(j)
+iω

)(
E+

1
y

)
+

2αα2

ρ(j)k

}
A2

k

]
Āeiθ+H1I0(2kr)e2iθ

+ J1I0(3kr)e3iθ + c.c., (A.18)
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where the arbitrary functions H1 and J1 can be deter-
mined from boundary conditions.

ψ
(j)
3 =

N1

R
Hj(1 − ν)

[{
rT (j)(k, r) − a(j)P (j)(k, r)

}

×
{(

1
2k

+D(j)

)
∂2A

∂z2
1

− i
∂A

∂z2

}

−
{

1
2
r2F (j)(k, r) + a(j)rQ(j)(k, r)

}
∂2A

∂z2
1

]

× eiθ + d(j)F (j)(k, r)eiθ, (j = 1, 2) (A.19)

where d(j) is to be determined by boundary conditions.

N=− 1
4y2−1+Γ (1− 1

ν )(N22y(1−ν)+1)

[
1+
y2

2
+Γ

(
1
ν
−1

)

×
(

1
2
N2

0 y
2+2N0y+

3
2
−2y2+N2(1−ν)y+

1
2
N0N1y

2µ1[[F 2/µ]]

+ 2y2N1N2

{
(1 − ν)2 + ν[[F ]][[F2]]

})

− 1
2
δ
{
1 + E2

1 − ρ̂
(
1 + E2

2

)}]
, (A.20)

where

δ =
α2R3

ρ(1)σ
, ρ̂ =

ρ(1)

ρ(2)
, (A.21)

B0 =
(

1
ν
− 1

) [
−(1 + yN0)

{
2(N + c0)

− 6 +
5
2
y2 − 3yN0 − 4y[[C]]

}

− (N + c0)
(
1 − y2

) − 2y2 − 2N0y
2[[CFF2]]

+ yN1

({
−NN1y(1 − ν) −N + 1

− 3
2
y2 +

3
2
N1y(1 − ν)

}
(1 − ν)

− y

{
2
µ2

[[
µC

(
F2 − 1

y

)]]
− νN1[[F ]]

(
N +

3
2

)}
[[F ]]

)]
,

(A.22)

where c0 = −2(1 +Rα2).
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